

Value engineering in Road Asset Management as a tool supporting the selection of design solutions

Leszek Janusz ,PhD CEng.

CEO

ViaCon Group

Sopot 06062018

Infrastructure Asset Management

Infrastructure asset management is the **Combination of management**, **financial**, **economic**, **engineering**, and other practices applied to physical assets with the objective of providing the required level of service in the most cost-effective manner. It includes the management of the **entire lifecycle**—including design, construction, commissioning, operating, maintaining, repairing, modifying, replacing and decommissioning/disposal—of physical and infrastructure assets

ASSET MANAGEMENT IN LCA CONTEXT

1947 - General Electric introduced the concept in order to obtain better alternatives at lower cost

Lawrence D. Miles – was in charge of concept – Value Analysis

1957 — Value Analysis renamed to "Value Engineering" (VE) by Navy's

Bureau of Ships and put into a formal VE program.

Definition of Value Engineering

Value Engineering - systematic process of review and analysis of a project, during the concept and design phases, by a multidiscipline team of persons not involved in the project, that is conducted to provide recommendations for:

- providing the needed functions safely,
 reliably, efficiently, and at the lowest overall cost;
- improving the value and quality of the project;
- reducing the time to complete the project.

www.viacongroup.com

Potential Savings from VE Applications

Saving by using Value Engineering in USA (bln USD) 2010-2015 Summary Of Past VE Savings Federal-Aid and Federal Lands Highway Programs

	Summary O	f Past VE Savings I	Federal-Aid and Federal-	deral Lands Highw	ay Programs	
	FY 2015	FY 2014	FY 2013	FY 2012	FY 2011	FY 2010
Number of VE Studies	135	215	281	352	378	402
Cost to Conduct VE Studies and Program Administration	\$6.4 M	\$8.7 M	\$9.8 M	\$12.0 M	\$12.5 M	\$13.6 M
Estimated Construction Cost of Projects Studied	\$14.1 M	\$20.9 B	\$23.0 B	\$30.3 B	\$32.3 B	\$34.2 B
Total Number of Proposed Recommendation s	1.233	1,664	2,381	2,905	2,950	3,049
Total Value of Proposed Recommendation s	\$2.5 B	\$3.0 B	\$2.91 B	\$3.78 B	\$2.94 B	\$4.35 B
Number of Approved Recommendation s	504	697	1,011	1,191	1,224	1,315
Value of Approved Recommendation s	\$831 M	\$1.73 B	\$1.15 B	\$1.15 B	\$1.01 B	\$1.98 B
Percent of Project Cost Saved	5.90%	8.32%	5.01%	3.78%	3.12%	5.79%
Return on Investment	129:1	200:1	118:1	96:1	80:1	146:1

ViaCon

Description of Value Engineering process

Orientation phase

Selection of project and team involed

Information phase

 Identification of needs of the project. High cost low value area's specifed

Creative phase

• Creative development of alternatives that are cost effective and achieve the basic function

Functional phase

 Functional analysis of product/service

Development phase

 Judgement and ranking of ideas developed in former phase

Evaluation phase

 Final recommendation is developed. Detailed technical and economical assessment of it is conducted

Presentation phase

 Presentation of the best alternative/s to decision makers (VEP)-Value Engineering Proposal, including necessary action plan to introduce the decision

Implementation and follow up

 Conversion of approved decision into action.Summary report after successful completion

LCCA – Life cycle cost analysis

Time or use

LCCA – Life cycle cost analysis

Picture 3. LLCA in bridge engineering after NCHRP

LCCA – Calculation model

PV = A + PVAs + PAr + PVrs

PV – *present value of total cost*

- A initial investment cost (including design and construction)
- PVAs present value of future repairs
- PVAr- present value of future maintenance costs

PVArs- present value of future replacement/reconstruction costs

LCCA – Calculation model

ViaCon

As commonly known in economics the later the spending of money the better:

Present Value of \$1.00 Expended at Various Intervals and Discount Rates						
	Discount Rate					
Year	3%	6%	9%			
0	1.00	1.00	1.00			
25	.48	.23	.12			
50	.23	.05	.01			
75	.11	.01	.01			

Present Value of \$1.00 Expended at Various Intervals and Discount Rates

Picture 4. Present value (PV) of future spend of single USD at various discount rates

LCCA – Calculation model

$PVAs = As/(1+dr)^n(2)$

$PVAr = Ar^* ((1+dr)^n-1) / (dr(1+dr)^n)(3)$

 $PVArs = Ars/(1+dr)^n$

 $d_r = (1+d)/(1+l) - 1$

I - inflation rate

d - discount rate

dr- real discount rate

n-number of years after completion of construction works an occurrence of repair/replacement

As- cost of the planned repair

Ar- recurring maintenance annual cost

Ars- replacement cost

PV- present value

ViaCon

Picture 5. Two bridges having the same function concrete and buried corrugated steel bridge

The scope of this analysis does not take into acocunt :

overal agency costs, environmental footprint, social costs, related road costs like grade line change etc.

Picture 6. longitudinal section of concreto bridge – Alternative 1.

Span – 17,0m

Length – 29,0m

Picture 7. Cross section of buried corrugated steel structure – Alternative 2.

Span – 18,0 m

Bottom length – 56,0 m

ViaCon

Example 1

	FILL IN GREEN					
1/	function			Underanss		
-/ 2/	load class			А	Polish stand	ard
_/ 3/	design life			100	vears	
4/	environment			medium aggr	essive	
5/	span			17	18	m
6/	bottom length			29	56	m
7/	cover			0	3	m
8/	thickness of the wall			Alt 1	Alt 2	Alt 3
	[mm]			n/a	7/ 5,5	0
9/	Alternatives			Δl t 1	Alt 2	Alt 3
51	, aternatives			Concrete	Corrugated s	teel
10/	material life time (v	ears)		100	100	0
10/	total investment cos	ts [pln]		Alt 1	Alt 2	Alt 3
				2421000	2250000	0
11/	REPAIRS COST	YEAR OF SERVICE		Alt 1	Alt 2	Alt 3
	[pln]		10	137152	0	0
			20	345509	0	
			30	137152	100000	0
			40	345509	0	
			50	137152		
			60	345509	100000	
			70	137152		
			80	345509		
			90	137152	100000	
			100			
				2067794 08	300000	
				2007734,00	50000	
12/	AVERAGE ANNUAL M	AINTENACE COST		Alt 1	Alt 2	Alt 3
	Ar [pln]			1340	650	C
12/						
13/	REPLACEIVIEINT CUST	VEAR		Alt 1	Δl+ 2	Alt 3

1.Total investment costs

2.Repair costs

- 3.Maintenance costs
- 4.Replacement costs

NOMINAL DISCOUNT RATE	d=	5%	5%
AVERAGE ANNUAL INFALTION	l=	2%	2%
REAL DISCOUNT RATE	dr=	2,94%	2,94%

	Net Present Value	Alt.1	Alt.2
NPV=		3262832	2475450
	INVESTEMENT	Alt.1	Alt.2
	A=	2421000	2250000
	SELECTION	0	Alt.2

Repair costs in time

Sensitivity of NPV to discount rates

Picture 8. Three pipes used to build a culvert alt.1/ Corrugated steel pipe (CSP) galvanized alt.2/ Corrugated steel pipe (CSP) in trenchcoat alt.3/ Reinforced concrete pipes (RCP)

Example 2		LCA MODEL					
		FILL IN GREEN					
	1/	function		culvert			
	2/	load class		А	Polish standa	ard	
	3/	design life		100	years		
	4/	environment		medium aggr	essive		
	5/	span		1500	mm		
	6/	bottom length		20	m		
	7/	cover		1,2	m		
	8/	thickness of the wall		Alt 1	Alt 2	Alt 3	
		[mm]		2	2	70	
	9/	Alternatives		Alt 1	Alt 2	Alt 3	
				HC Zn600	НСТС	concrete	pipes
	10/	material life time (yea	rs)	25	100	100	
	10/	total investment costs		Alt 1	Alt 2	Alt 3	
				80000	95000	1	120000
	11/	REPAIRS COST	YEAR OF SERVICE	Alt 1	Alt 2	Alt 3	
	,		25	30000	0	/	0
		[biii]	25	30000	0		
			40	20000	20000		
			50	20000	0	20	0000
			75	20000	20000		
	12/	AVERAGE ANNUAL MAI	NTENACE COST	Alt 1	Alt 2	Alt 3	
		Ar [pln]		500	300		200
	13/	REPLACEMENT COST					
ViaCon			YEAR	Alt 1	Alt 2	Alt 3	
			100	80000	140000	1	165000

NOMINAL DISCOUNT RATE	d=	5%	5%	5%
AVERAGE ANNUAL INFALTION	=	2%	2%	2%
REAL DISCOUNT RATE	dr=	2,94%	2,94%	2,94%

Net Present Value	Alt.1	Alt.2	Alt.3
NPV=	124453	120898	140210
INVESTEMENT	Alt.1	Alt.2	Alt.3
A=	80000	95000	120000
SELECTION	0	Alt.2	0

- 1. Road Asset Management is driven by Value Engineering (VE) at planning stage
- 2. (VE) is an unbias evaluation method helping in selection of optimal solutions
- 3. (VE) has been used successfully worlwide and saved a lot of tax payers money
- 4. Road Asset Managers shoudl have an input into VE at planning stage

Acknowledgements

- 1. Peter Narsavage
- 2. Kevin White
- 3. Andrzej Maciejewski
- 4. Dr Tomasz Rudnicki

THANK YOU FOR YOUR ATTENTION