STABILIZACJA ZIARNISTYM DODATKIEM HYDROFOBOWYM

MGR INŻ. MAŁGORZATA GARBACZ-SKUBIS

OD 2011 R. PONAD 100 PROJEKTÓW ZOSTAŁO ZREALIZOWANYCH Z ZASTOSOWANIEM DODATKÓW FIRMY NASCON

PRZESZKOLILIŚMY BLISKO 200 Zamawiających publicznych, ponad 100 Biur projektowych i ponad 50 Wykonawców

DOSTARCZYLIŚMY NA RYNEK PONAD 150 Licencji programu do mechanistyczno-Empirycznego obliczania konstrukcji Nawierzchni

STABILIZOWAĆ MOŻNA:

- grunty rodzime, ewentualnie doziarnione gliną lub kruszywem
- istniejące warstwy nawierzchni poddane recyklingowi

PODSTAWA:

minimum 10% zawartości drobnych frakcji <0,063 mm w materiale np.:

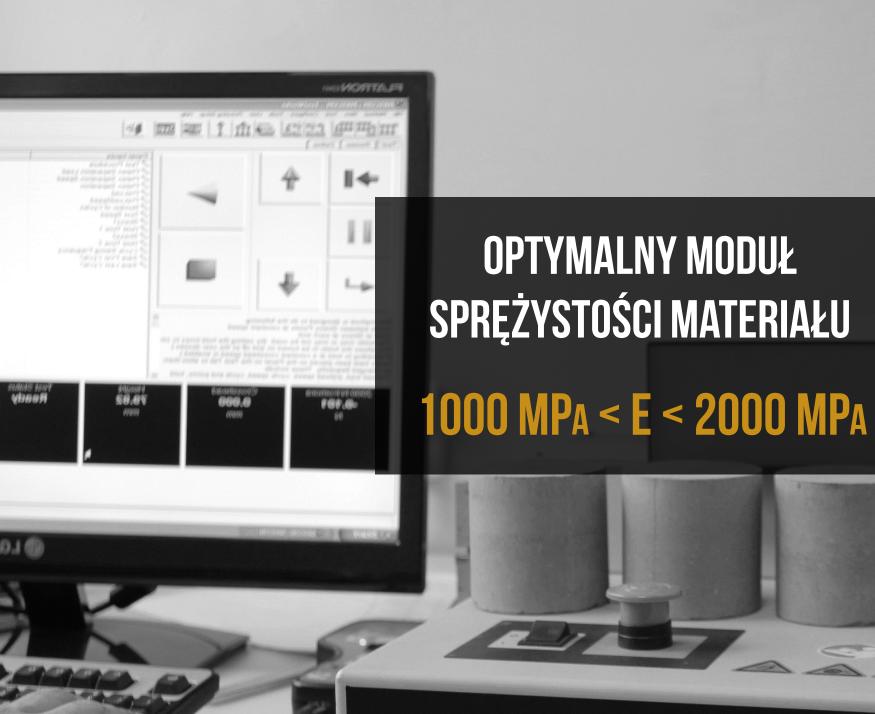
- Piaski gliniaste
- Gliny piaszczyste
- Gliny
- Kruszywa zaglinione

WARSTWA STABILIZOWANA DODATKIEM SICCABASE® W KONSTRUKCJI NAWIERZCHNI

WYSOKA JAKOŚĆ ROZWIĄZANIA

ODCIĘCIE PODCIĄGANIA WODY
 PODATNOŚĆ = BRAK SPĘKAŃ
 OPTYMALNY MODUŁ SPRĘŻYTOŚCI
 ZWIĘKSZONA MROZOODPORNOŚĆ

GRUNT


 H_2O

TRWAŁA ODPORNOŚĆ NA Absorpcję kapilarną wody

WARSTWA SZTYWNA — TRADYCYJNA STABILIZACJA CEMENTEM Dwie Fazy Pracy:

FAZA I: BRAK SPĘKAŃ = WYSOKI MODUŁ WARSTWY

FAZA II: SPĘKANIA = NISKI MODUŁ WARSTWY (NA POZIOMIE KRUSZYWA)

>4500 MPa

~400 MPa

>1000 MPa

WARSTWA PODATNA Podbudowa stabilizowana dodatkami

- BRAK EFEKTU PRZESZTYWNIENIA WARSTWY DOZOWANIE SPOIWA DO 3% (M/M)
- ODMIENNA CHARAKTERYSTYKA PRACY MATERIAŁU W PORÓWNANIU DO TRADYCYJNYCH STABILIZACJI
- KORZYSTNY ZMIENNY ROZKŁAD MODUŁÓW W PRZEKROJU WARSTWY

NISKI WSPÓŁCZYNNIK PRZENIKANIA CIEPŁA – ZWIĘKSZONA Izolacyjność termiczna

PODBUDOWA STABILIZOWANA DODATKAMI – $\lambda = 0,45 - 0,5$ [W/mK]

PODBUDOWA Z KRUSZYWA – $\lambda = 1,0 [W/mK]$

BADANE WG: PE EN 12664:2002 PE EN ISO 6964:2008 **[W/MK]** WSPÓŁCZYNNIK Przewodzenia ciepła MOŻLIWE ZACHOWANIE MROZOODPORNOŚCI Konstrukcji przy Mniejszej sumarycznej grubości warstw

BADANIE

INSTYTUTU Techniki Budowlanej

DROGI PUBLICZNE, KATEGORIE RUCHU **KR1 - KR5**

PONAD 100 REALIZACJI W POLSCE Z ZASTOSOWANIEM DODATKÓW FIRMY NASCON

- Skawina droga do Wytwórni Mas Bitumicznych
- Andrychów ul. Żwirki i Wigury
- Bukownia Strefa Aktywności Gospodarczej
- Kraków ul. Grota Roweckiego
- Kęty droga dojazdowa do oczyszczalni
- Wolbrom podsadzka hali produkcyjnej Bilstein
- Drwinia droga powiatowa
- Inwałd drogi w gminie Andrychów
- Gmina Skoczów Droga w Bładnicagch
- Pszczyna ul. Zawadzkiego
- Tychy ul. Jaśkowiaka ścieżka rowerowa
- Sosnowiec DK94

- Sokołowice Koszycka Strefa Aktywności Gospodarczej
- Oświęcim ul. Fabryczna
- Kraków przebudowa Rynku Podgórskiego
- Roczyny– droga miejska
- Rzyki droga miejska
- Inwałd osiedle Korcza
- Bielsko-Biała ul. Żywiecka S-69
- Jaworzno drogi i parkingi na osiedlu
- Czechowice-Dziedzice ul. Wodna
- Sławków przebudowa odcinka drogi powiatowej 4809S ul. Kolejowa • Gmina Gzód – DP3526W

- ZDP Bielsko-Biała droga powiatowa Wilamowice
- Będzin droga wewnętrzna przy Stacji Transformatorowej Tauron
- Bielsko-Biała drogi na terenie Tauron ZEC
- Czechowice Dziedzice ul. Wierzbowa,
- Czechowice Dziedzice ul. Burzej
- gmina Skoczów Droga Gminna w Pierścu
- Bestwina droga powiatowa ul. Szkolna
- Bieruń droga dojazdowa strefy przemysłowej
- Bielsko-Biała ul. Dworska
- <u>Skoczów droga miejska</u>
- Kaniów gmina Bestwina

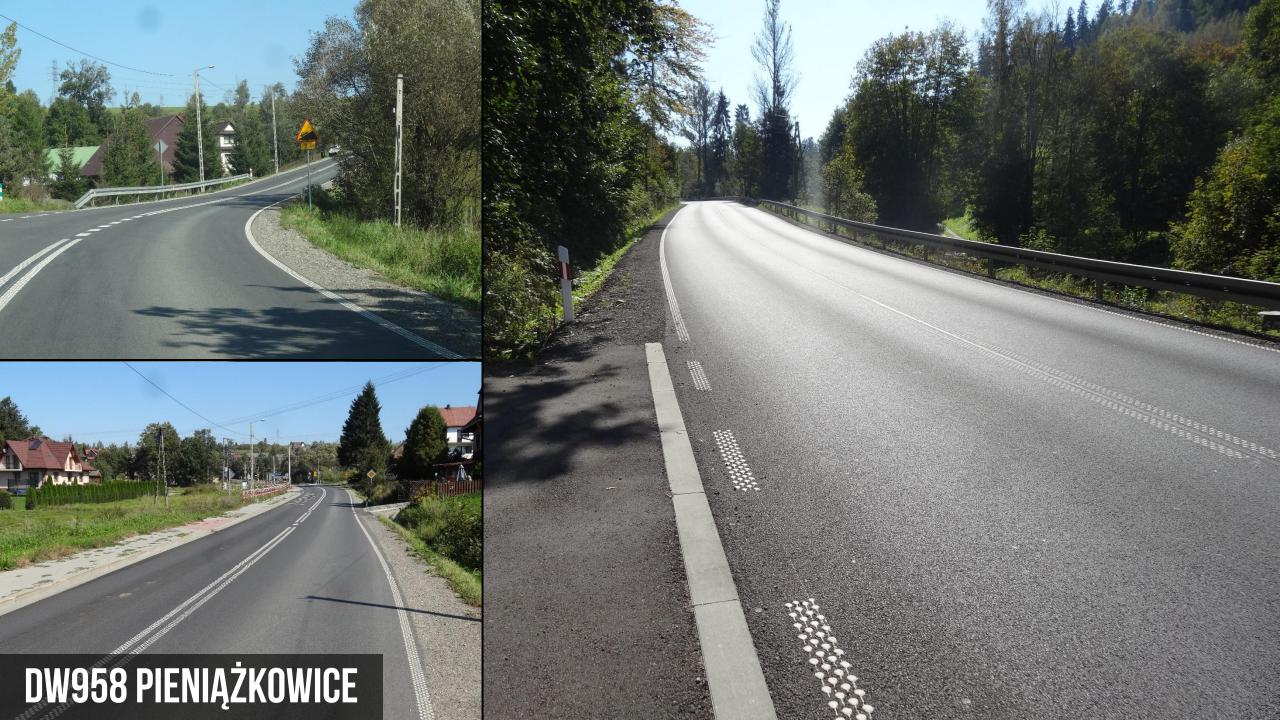
- Żywiec ul. Grapa
- Sosnowiec ul. Krakowska
- Zabłocie Droga w gminie Strumień
- Czechowice-Dziedzice droga gm. w Boronowie
- Mazańcowice przebudowa drogi powiatowej
- Bielsko-Biała ul. Bestwińska
- Mysłowice modernizacja ulicy Wielka Skotnica
- Siemianowice Śląskie ul. Bytomska
- Kędzierzyn Koźle droga gminna
- Tychy parking przy ul. Sikorskiego
- Pszczyna droga gminna w Jankowicach
- Chybie drogi gminne
- Powiat Olkuski DP1129K

DROGI W POLSCE – 10 LAT POZYTYWNYCH DOŚWIADCZEŃ

DROGA KRAJOWA DK69

REALIZACJA

DROGI WOJEWÓDZKIE


DROGI WOJEWÓDZKIE

DW382 DZIERŻONIÓW

SZKOLENIA I DYSKUSJE

ANALIZA DOKUMENTACJI I PROJEKTY KONSTRUKCJI NAWIERZCHNI

DORADZTWO TECHICZNIE NA BUDOWIE Wykonywanie badań, recept, Odbiorów

STOSOWANIE DODATKU SICCABASE®
JEST BEZPIECZNE DLA LUDZI,
ZWIERZĄT I ŚRODOWISKA

	OŚRODEK BADAŃ I KONTROLI ŚRODOWISKA Spółka z ograniczoną odpowiedzialnością Rok założenia: 1958							
PONAD 55 LAT DOSWIADCZENIA W WYKONYWANIU DORUMENTACJI ŚRODOWISKOWYCH	Bac	lania i ocena wła	aściwości					
pracowujemy: yniki badań, pinie ekologiczne o odpadach,	fizykochemicznych produktów							
dstarwawe charakterystyki jpodów, jpodów, inie o właściwościach padów, ozadów, gleb rośćiwości ich wykrezystania, podów oddziaływania źrodowieko, eraty wocinegrawne,	Duosolid i SiccaBase							
inioski o uzyskanie pozwoleń iektorowych	Zlecenie nr:	OBiKŚ 05/3739/2017/BOE	Ś z dnia 18.09.2017					
konujemy: dytowane pobleranie	Zleceniodawca:	NASCON Sp. z o.o.						
lania: d, sków,		ul. Harcerska 152						
sków, adów šciekowych i dennych, sadów, ów i gazów		43-100 TYCHY						
niany: izsu, izów sładowiskowych, izenia i emisji pyłów i gazów, niaj i imisji związków	Numery próbek:	Z52987 ÷ Z52989						
ganicznych i nieorganicznych	Inne dane:	Próbka nr 1: grunt odniesie	enia bez dodatków – Z53987					
anizujemy: ównania idzylaboratoryjne.		Próbka nr 2: grunt odniesie	enia z dodatkiem Duosolid					
olenia, warsztaty		i 3% cementu CEM I 42,5R	- Z53988					
Peina oferta stronie internetowej		Próbka nr 3: grunt odniesie	nia z dodatkiem SiccaBase					
www.obiks.pl		i 2% cementu CEM I 42,5R	- Z53989					
	Data rozpoczęcia ł	<u>padań:</u> 16.09.2017 r.						
Laureat Cedycji konkursu	Data zakończenia	pracy: 18.10.2017 r.						
EUROPRODUKT	Opracował:		Zatwierdził:					
w kalegorii EUROUSLUGA	Precowni Angetz Fi	WNIK	0					
(badania, pomiary ksportyzy w zakrosie chrony środowiska)		and FINSMA	KIEROWNIA LABORATORIUM					
			mgr Justina GREGER					
		/	l					
PROMOTOR EKOLOGI		Katowice, 19 październik 2	2017 r.					
nadany ach 2001 i 2002	Niniejs	zy dokument może być kopiowan	y jedynie w całości					
		Rozdzielnik: 2 egz. Klient, 1 e	egz. a/a					
	Adres: 40-158 Katowice sl. Owocowa 8	Telefon: 32/259 70 36+39 centrala 32/259 96 16 sekretariat	KRS: 0000288674 NIP: 634-013-62-91					

GŁÓWNY INSTYTUT GÓRNICTWA ZAKŁAD MONITORINGU ŚRODOWISKA 2012 R.

ŚLĄSKI OGRÓD BOTANICZNY 2012 R.

OŚRODEK BADAŃ I KONTROLI ŚRODOWISKA 2017 r.

OPTYMALIZACJA KOSZTÓW

- ZMNIEJSZONA GRUBOŚĆ WARSTW MMA DZIĘKI PARAMETROM TECHNICZNYM PODBUDOWY
- WYKORZYSTANIE DO BUDOWY WARSTWY ISTNIEJĄCEGO MATERIAŁU GRUNTOWEGO
- OGRANICZONE KORYTOWANIE, OGRANICZONY TRANSPORT KRUSZYWA
- REDUKCJA PROBLEMU DEGRADACJI DRÓG LOKALNYCH

OPTYMALIZACJA CZASU BUDOWY

- ODBIÓR WARSTWY PO 72H OD WBUDOWANIA
- WYKORZYSTANIE ISTNIEJĄCEGO MATERIAŁU GRUNTOWEGO
- OGRANICZENIE TRANSPORTU (KORYTOWANIE, KRUSZYWA)

INDYWIDUALNE PROJEKTOWANIE KONSTRUKCJI NAWIERZCHNI Metodą mechanistyczno-empiryczną

"Katalog Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych, po jego wprowadzeniu w życie, nie może hamować postępu technicznego w rozwoju materiałów drogowych, technologii i inżynierskich metod projektowania (...) Dopuszczone powinno być indywidualne projektowanie konstrukcji nawierzchni (...) w celu optymalnego ich dostosowania do warunków miejscowych (...). Proces indywidualnego projektowania jest konieczny w przypadku zastosowania nowych, innowacyjnych materiałów drogowych."

KTKNPIP 2014 r. - prof. dr hab. inż. Józef Judycki i inni

MWS PAVEMENT DESIGN

MWS Pavement Design [®]

OBLICZANIE TRWAŁOŚCI ZMĘCZENIOWEJ KONSTRUKCJI NAWIERZCHNI PODATNYCH I PÓŁSZTYWNYCH METODA MECHANISTYCZNO-EMPIRYCZNĄ

> Producent: Nascon Sp. z o.o. ul. Harcerska 152 43-100 Tychy www.nascon.pl Pomoc techniczna: mws@nascon.pl tel. +48 606 448 613

nascon

MWS Pavement Design jest programem łączącym możliwość obliczania stanu naprężeń, odkształceń i przemieszczeń w konstrukcji oraz weryfikacji trwałości zmęczeniowej nawierzchni asfaltowych.

Wartości σ , ϵ , s są wyznaczane z wykorzystaniem metody warstw skończonych należącej do grupy przybliżonych metod analitycznych. Opiera się ona na modelu warstw sprężystych.

Trwałość zmęczeniowa jest obliczana z zależności empirycznych przedstawionych w metodach: AASHTO i Instytutu Asfaltowego.

Cały program ubrany został w prosty i przyjazny dla użytkownika Interface, który umożliwia obliczenie trwałości w zaledwie kilka minut. MWS Pavement Design umożliwia również zestawienie dwóch konstrukcji w trybie porównawczym. Wyniki z obliczeń są generowane w estetycznym, kompleksowo opisanym raporcie, który może być elementem dokumentacji technicznej.

FUNKCJONALNOŚĆ

- Projektowanie konstrukcji
- Weryfikacja konstrukcji
- Możliwość zastosowania i weryfikacji nowych rozwiązań
- Optymalizacja konstrukcji poprzez:
 - zastosowanie materiałów nie określonych w katalogu,
 - modyfikację parametrów warstw,
 - uwzględnienie materiałów miejscowych (łatwodostępnych),
 - dostosowanie do obciążenia,
 - modyfikowanie grubości warstw
 w zależności od dostępności materiałów.

MWS Pavement Design ®

czej stabilizowa

Plik Ustawienia Pomoc

U

	10	-x- O			X.J							
nu	koja 1						Kon	nstruk	icja 2			
że	nie i Warstwy	Punkty				^	Ob	ciąże	nie i Warstwy	Punkty		
	Moduł Younga	Wsp. Poissona	Grubość warstwy	z	Opis		Γ		Moduł Younga	Wsp. Poissona	Gruboś warstw	
	9 300,00	0,30	0,04	-0,04	Warstw				9 300,00	0,30	0,04	-1
	10 300,00	0,30	0,05	-0,09	Warstw				10 300,00	0,30	0,08	-
	9 800,00	0,30	0,07	-0,16	Warstw		Þ		1 000,00	0,30	0,4	-
	400,00	0,30	0,2	-0,36	Warstw							
	200,00	0,30	0,28	-0,64	Warstw							
	150,00	0,30	0,25	-0,89	Warstw							
st	wa						V	Varstv	wa			
	Wars	twa wiążąc	a z betoni	u asfal	towego (AC)		0	pis	Wars	twa podbu	dowy zas	adni
blez warstwe z katalogu							Į.	Vybier	rz warstwę z kat	talogu		
		-										
	ść warstwy	L	,05 (m						ść warstwy		0,40	[m]
luł	Younga	1	.0300,00 [N	IPa]			M	loduł	Younga		1000,00	[MPa
ó	czynnik Poiss	ona e	,30				V	Vspół	czynnik Poissi	ona	0,30	
st	wa asfaltowa		/				v	Varstv	wa asfaltowa			
do	ść asfaltu	1	1,50 [%]			0	bjęto	ść asfaltu			[%]
to	ść wolnych pr	zestrzeni 6	,00 [%]	\mathbf{v}		0	bjęto	ść wolnych pr	zestrzeni		[%]
	dowa zasadni owana spolwe								dowa zasadnie owana społwe			
luł	Ifaza	- E	[N	IPa]			M	loduł	Ifaza			(MPa
. I	Poissona I fazi	•					v	Vsp. F	Poissona faza	,		
lul	ll faza		[N	IPa]			Ν	loduł	ll faza			[MPa
). Poissona II faza							V	Vsp. F	Poissona II faz	a		
rzymałość na zginanie			[MPa]				Wytrzymałość na zgina			inanie		[MPa
eŕ	i warstwy	222					٥)eseri	i warstwy			
Ja	uń Zapł	9Z			Dodaj			Usu	uń Zapis	JZ		
ło	że					~	P	odło	że			

	kcja 1 Konstrukcja 2 Porównanie Trwałość zmęczeniowa												
rzei	mieszczenia												
	Opis					Punkt	Z	w		٧	U '		
•	Warstwa ścieralna z betonu asfalt	wego (AC) k	R3-KR4 kon	strukcja	odatn	e;e	-0,04-0	0,00041	1	0 0			
	Warstwa ścieralna z betonu asfalt	wego (AC) #	R3-KR4 kon	strukcja	odatn	e;e	-0,04+0	0,00041	1	8 6			
	Warstwa wiążąca z betonu asfaltow	go (AC) KR3	(AC) KR3-KR7 konstrukcja podatna				-0,09-0	0,00041	1	e e			
	Warstwa wiążąca z betonu asfaltow	go (AC) KR3	-KR7 konst	rukcja po	datna	0;0	-0,09+0	0,00041 0		0 0	•		
	Warstwa podbudowy zasadniczej z b	e;e	-0,16-0	e,eee4	1	e e	,						
	Warstwa podbudowy zasadniczej z b	tonu asfalt	owego (AC)	KR3-KR7	constr	0;0	-0,16+0	0,00040 0 0					
	warstwa podbudowy zasadniczej z m	ieszanki nie	związanej	z kruszyw	en C90/3	e;e	-0,36-0	e,eee4e e		e e			
	Warstwa podbudowy zasadniczej z mieszanki niezwiązanej z kruszywem C90/3						-0,36+0	0,00036 0		0 0	0		
201	eżenia	et en de see	andaranal				0.64.0	0.0003			1		
арі	Opis	Punkt	Z	SIZZ	SIZY	SIZX	SIYY	SIYX	SIX	v	Ξ.		
	Warstwa ścieralna z betonu asfal.		-0,04-0	-0.8	0	0	-1,8	0		-1,8			
	Warstwa ścieralna z betonu asfal.		-0,04+0	-0.7	0	9	-0.9	0	-0.9.				
	Warstwa wiażaca z betonu asfalto.		-0,09-0	-0.7	0	0	-1.0	0	-1,6				
	Warstwa wiażąca z betonu asfalto.		-0,09+0	-0.4	0	0	0.05	0	0.05				
	Warstwa podbudowy zasadniczej z .	. 0:0	-0,16-0	-0.4	0	0	0.04	0	0.04		1		
	Warstwa podbudowy zasadniczel z .	. e:e	-0,16+0	-0.1	9	0	1.47	e	1.4				
	Warstwa podbudowy zasadniczej z .	. 0:0	-0,36-0	-0.1	0	0	0.01	0	0.01				
	Warstwa podbudowy zasadniczej z .	. e:e	-0.36+0	-0.0	9	0	0.03	9	0.03				
	uneter mennehennen e minerank	0.0	0.000				0.01		0.01				
dks	ztałcenia								_		_		
	Opis	Punkt	Z	EPSIZZ	EPSIZY	EPSIZX	EPSIYY	EPSIYX	EPS		-í		
	Warstwa ścieralna z betonu asfal.		-0,04-0	2,94	0	0	-0,0	0	-0,6				
	Warstwa ścieralna z betonu asfal.		-0,04+0	-2,8	9	9	-4,6	6	-4,6				
	Warstwa wiążąca z betonu asfalto.		-0,09-0	-1,4	0	0	-4,6	0	-4,6				
	Warstwa wiążąca z betonu asfalto.		-0,09+0	-4,7	0	9	1,70	6	1,78				
	Warstwa podbudowy zasadniczej z .		-0,16-0	-4,9	0	9	1,70	9	1,76		-1		
	Warstwa podbudowy zasadniczej z .		-0,16+0	-0,0	0	9	0,00	0	0,00		-		
	Warstwa podbudowy zasadniczej z .		-0,36-0	-0,0	0	9	0,00	0	0,00		-		
	Warstwa podbudowy zasadniczej z .	. 0;0	-0,36+0	-0,0	0	9	9,76	0	9,76	····	Ц,		

STABILIZACJA ZIARNISTYM DODTKIEM HYDROFOBOWYM

MGR INŻ. MAŁGORZATA GARBACZ-SKUBIS